Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Commun ; 14(1): 2235, 2023 04 19.
Article in English | MEDLINE | ID: covidwho-2295356

ABSTRACT

Reconstructing the incidence of SARS-CoV-2 infection is central to understanding the state of the pandemic. Seroprevalence studies are often used to assess cumulative infections as they can identify asymptomatic infection. Since July 2020, commercial laboratories have conducted nationwide serosurveys for the U.S. CDC. They employed three assays, with different sensitivities and specificities, potentially introducing biases in seroprevalence estimates. Using models, we show that accounting for assays explains some of the observed state-to-state variation in seroprevalence, and when integrating case and death surveillance data, we show that when using the Abbott assay, estimates of proportions infected can differ substantially from seroprevalence estimates. We also found that states with higher proportions infected (before or after vaccination) had lower vaccination coverages, a pattern corroborated using a separate dataset. Finally, to understand vaccination rates relative to the increase in cases, we estimated the proportions of the population that received a vaccine prior to infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Seroepidemiologic Studies , Asymptomatic Infections , Biological Assay , Antibodies, Viral
2.
Int J Forecast ; 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1914469

ABSTRACT

The U.S. COVID-19 Forecast Hub aggregates forecasts of the short-term burden of COVID-19 in the United States from many contributing teams. We study methods for building an ensemble that combines forecasts from these teams. These experiments have informed the ensemble methods used by the Hub. To be most useful to policy makers, ensemble forecasts must have stable performance in the presence of two key characteristics of the component forecasts: (1) occasional misalignment with the reported data, and (2) instability in the relative performance of component forecasters over time. Our results indicate that in the presence of these challenges, an untrained and robust approach to ensembling using an equally weighted median of all component forecasts is a good choice to support public health decision makers. In settings where some contributing forecasters have a stable record of good performance, trained ensembles that give those forecasters higher weight can also be helpful.

3.
American Journal of Public Health ; 112(6):839-842, 2022.
Article in English | ProQuest Central | ID: covidwho-1877289

ABSTRACT

[...]models can vary in terms of what data they use, what they assume about transmission, and what analytic approach they use to produce projections. Because of this, relying on one model is dangerous because there is no guarantee that one model's choices and assumptions will yield an accurate prediction. In many fields, there is a long tradition of combining multiple models to mitigate this limitation by providing a single prediction that summarizes the view of the participating models.7 There has been a growing interest in using ensemble methodologies in epidemiology, with notable efforts in forecasting, risk prediction, causal inference, and decision-making.8-12 COORDINATION, COLLABORATION, AND EVALUATION A modeling "hub" is a consortium of research groups organized around a particular scientific challenge. The US COVID-19 Forecast Hub ensemble (including many component models) has struggled to produce accurate forecasts of cases and hospitalizations during periods of rapidly changing epidemic dynamics, such as the US peak of the winter wave in early 2021 or the rapid increases associated with the Delta variant in summer 2021 or in winter 2021-2022.3 Likewise, although longer-term projections from the COVID-19 Scenario Modeling Hub projected a Delta-associated resurgence in the United States, the ensemble significantly underestimated its speed and size, even though there were no clear deviations from scenario assumptions.13 However, even when projections are wrong, the hubs play a role in enhancing the scientific rigor and integrity of epidemic modeling. [...]operationally, there is value in developing procedures that harness the insights of a diverse network of scientists while guarding against groupthink and overconfidence.12 As researchers, system developers, and public health officials who have been deeply involved in the real-time operation of modeling hubs duringthe COVID-19 pandemic and prior epidemics, we believe the hub approach is a vital path forward for predictive disease modeling efforts.

4.
PLoS One ; 17(4): e0266095, 2022.
Article in English | MEDLINE | ID: covidwho-1817480

ABSTRACT

INTRODUCTION: Impacts of COVID-19 mitigation measures on seasonal respiratory viruses is unknown in sub-tropical climates. METHODS: We compared weekly testing and test-positivity of respiratory infections in the 2019-2020 respiratory season to the 2012-2018 seasons in southern Puerto Rico using Wilcoxon signed rank tests. RESULTS: Compared to the average for the 2012-2018 seasons, test-positivity was significantly lower for Influenza A (p<0.001) & B (p<0.001), respiratory syncytial virus (RSV) (p<0.01), respiratory adenovirus (AdV) (p<0.05), and other respiratory viruses (p<0.001) following March 2020 COVID-19 stay at home orders. CONCLUSIONS: Mitigation measures and behavioral social distancing choices may have reduced respiratory viral spread in southern Puerto Rico.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus, Human , Viruses , COVID-19/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Puerto Rico/epidemiology
6.
Clin Infect Dis ; 74(5): 913-917, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1708595

ABSTRACT

Modeling complements surveillance data to inform coronavirus disease 2019 (COVID-19) public health decision making and policy development. This includes the use of modeling to improve situational awareness, assess epidemiological characteristics, and inform the evidence base for prevention strategies. To enhance modeling utility in future public health emergencies, the Centers for Disease Control and Prevention (CDC) launched the Infectious Disease Modeling and Analytics Initiative. The initiative objectives are to: (1) strengthen leadership in infectious disease modeling, epidemic forecasting, and advanced analytic work; (2) build and cultivate a community of skilled modeling and analytics practitioners and consumers across CDC; (3) strengthen and support internal and external applied modeling and analytic work; and (4) working with partners, coordinate government-wide advanced data modeling and analytics for infectious diseases. These efforts are critical to help prepare the CDC, the country, and the world to respond effectively to present and future infectious disease threats.


Subject(s)
COVID-19 , Pandemics , Centers for Disease Control and Prevention, U.S. , Humans , Pandemics/prevention & control , Public Health , SARS-CoV-2 , United States/epidemiology
7.
Clin Infect Dis ; 74(3): 490-497, 2022 02 11.
Article in English | MEDLINE | ID: covidwho-1684539

ABSTRACT

BACKGROUND: Cruise travel contributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission when there were relatively few cases in the United States. By 14 March 2020, the Centers for Disease Control and Prevention (CDC) issued a No Sail Order suspending US cruise operations; the last US passenger ship docked on 16 April. METHODS: We analyzed SARS-CoV-2 outbreaks on cruises in US waters or carrying US citizens and used regression models to compare voyage characteristics. We used compartmental models to simulate the potential impact of 4 interventions (screening for coronavirus disease 2019 (COVID-19) symptoms; viral testing on 2 days and isolation of positive persons; reduction of passengers by 40%, crew by 20%, and reducing port visits to 1) for 7-day and 14-day voyages. RESULTS: During 19 January to 16 April 2020, 89 voyages on 70 ships had known SARS-CoV-2 outbreaks; 16 ships had recurrent outbreaks. There were 1669 reverse transcription polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infections and 29 confirmed deaths. Longer voyages were associated with more cases (adjusted incidence rate ratio, 1.10, 95% confidence interval [CI]: 1.03-1.17, P < .003). Mathematical models showed that 7-day voyages had about 70% fewer cases than 14-day voyages. On 7-day voyages, the most effective interventions were reducing the number of individuals onboard (43.3% reduction in total infections) and testing passengers and crew (42% reduction in total infections). All four interventions reduced transmission by 80.1%, but no single intervention or combination eliminated transmission. Results were similar for 14-day voyages. CONCLUSIONS: SARS-CoV-2 outbreaks on cruises were common during January-April 2020. Despite all interventions modeled, cruise travel still poses a significant SARS-CoV-2 transmission risk.


Subject(s)
COVID-19 , Disease Outbreaks , Humans , Public Health , SARS-CoV-2 , Ships , Travel , United States/epidemiology
8.
Vaccine ; 40(14): 2134-2139, 2022 03 25.
Article in English | MEDLINE | ID: covidwho-1671285

ABSTRACT

The Advisory Committee on Immunization Practices (ACIP) recommended phased allocation of SARS-CoV-2 vaccines in December 2020. To support the development of this guidance, we used a mathematical model of SARS-CoV-2 transmission to evaluate the relative impact of three vaccine allocation strategies on infections, hospitalizations, and deaths. All three strategies initially prioritized healthcare personnel (HCP) for vaccination. Strategies of subsequently prioritizing adults aged ≥65 years, or a combination of essential workers and adults aged ≥75 years, prevented the most deaths. Meanwhile, prioritizing adults with high-risk medical conditions immediately after HCP prevented the most infections. All three strategies prevented a similar fraction of hospitalizations. While no model is capable of fully capturing the complex social dynamics which shape epidemics, exercises such as this one can be a useful way for policy makers to formalize their assumptions and explore the key features of a problem before making decisions.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , COVID-19/prevention & control , Humans , Immunization , SARS-CoV-2 , United States/epidemiology , Vaccination
10.
PLoS Med ; 18(10): e1003793, 2021 10.
Article in English | MEDLINE | ID: covidwho-1477510

ABSTRACT

BACKGROUND: The importance of infectious disease epidemic forecasting and prediction research is underscored by decades of communicable disease outbreaks, including COVID-19. Unlike other fields of medical research, such as clinical trials and systematic reviews, no reporting guidelines exist for reporting epidemic forecasting and prediction research despite their utility. We therefore developed the EPIFORGE checklist, a guideline for standardized reporting of epidemic forecasting research. METHODS AND FINDINGS: We developed this checklist using a best-practice process for development of reporting guidelines, involving a Delphi process and broad consultation with an international panel of infectious disease modelers and model end users. The objectives of these guidelines are to improve the consistency, reproducibility, comparability, and quality of epidemic forecasting reporting. The guidelines are not designed to advise scientists on how to perform epidemic forecasting and prediction research, but rather to serve as a standard for reporting critical methodological details of such studies. CONCLUSIONS: These guidelines have been submitted to the EQUATOR network, in addition to hosting by other dedicated webpages to facilitate feedback and journal endorsement.


Subject(s)
Biomedical Research/standards , COVID-19/epidemiology , Checklist/standards , Epidemics , Guidelines as Topic/standards , Research Design , Biomedical Research/methods , Checklist/methods , Communicable Diseases/epidemiology , Epidemics/statistics & numerical data , Forecasting/methods , Humans , Reproducibility of Results
11.
MMWR Morb Mortal Wkly Rep ; 70(23): 846-850, 2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1389869

ABSTRACT

SARS-CoV-2, the virus that causes COVID-19, is constantly mutating, leading to new variants (1). Variants have the potential to affect transmission, disease severity, diagnostics, therapeutics, and natural and vaccine-induced immunity. In November 2020, CDC established national surveillance for SARS-CoV-2 variants using genomic sequencing. As of May 6, 2021, sequences from 177,044 SARS-CoV-2-positive specimens collected during December 20, 2020-May 6, 2021, from 55 U.S. jurisdictions had been generated by or reported to CDC. These included 3,275 sequences for the 2-week period ending January 2, 2021, compared with 25,000 sequences for the 2-week period ending April 24, 2021 (0.1% and 3.1% of reported positive SARS-CoV-2 tests, respectively). Because sequences might be generated by multiple laboratories and sequence availability varies both geographically and over time, CDC developed statistical weighting and variance estimation methods to generate population-based estimates of the proportions of identified variants among SARS-CoV-2 infections circulating nationwide and in each of the 10 U.S. Department of Health and Human Services (HHS) geographic regions.* During the 2-week period ending April 24, 2021, the B.1.1.7 and P.1 variants represented an estimated 66.0% and 5.0% of U.S. SARS-CoV-2 infections, respectively, demonstrating the rise to predominance of the B.1.1.7 variant of concern† (VOC) and emergence of the P.1 VOC in the United States. Using SARS-CoV-2 genomic surveillance methods to analyze surveillance data produces timely population-based estimates of the proportions of variants circulating nationally and regionally. Surveillance findings demonstrate the potential for new variants to emerge and become predominant, and the importance of robust genomic surveillance. Along with efforts to characterize the clinical and public health impact of SARS-CoV-2 variants, surveillance can help guide interventions to control the COVID-19 pandemic in the United States.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , COVID-19/epidemiology , Epidemiological Monitoring , Humans , SARS-CoV-2/isolation & purification , United States/epidemiology
12.
BMC Med ; 19(1): 94, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1388761

ABSTRACT

BACKGROUND: Balancing the control of SARS-CoV-2 transmission with the resumption of travel is a global priority. Current recommendations include mitigation measures before, during, and after travel. Pre- and post-travel strategies including symptom monitoring, antigen or nucleic acid amplification testing, and quarantine can be combined in multiple ways considering different trade-offs in feasibility, adherence, effectiveness, cost, and adverse consequences. METHODS: We used a mathematical model to analyze the expected effectiveness of symptom monitoring, testing, and quarantine under different estimates of the infectious period, test-positivity relative to time of infection, and test sensitivity to reduce the risk of transmission from infected travelers during and after travel. RESULTS: If infection occurs 0-7 days prior to travel, immediate isolation following symptom onset prior to or during travel reduces risk of transmission while traveling by 30-35%. Pre-departure testing can further reduce risk, with testing closer to the time of travel being optimal even if test sensitivity is lower than an earlier test. For example, testing on the day of departure can reduce risk while traveling by 44-72%. For transmission risk after travel with infection time up to 7 days prior to arrival at the destination, isolation based on symptom monitoring reduced introduction risk at the destination by 42-56%. A 14-day quarantine after arrival, without symptom monitoring or testing, can reduce post-travel risk by 96-100% on its own. However, a shorter quarantine of 7 days combined with symptom monitoring and a test on day 5-6 after arrival is also effective (97--100%) at reducing introduction risk and is less burdensome, which may improve adherence. CONCLUSIONS: Quarantine is an effective measure to reduce SARS-CoV-2 transmission risk from travelers and can be enhanced by the addition of symptom monitoring and testing. Optimal test timing depends on the effectiveness of quarantine: with low adherence or no quarantine, optimal test timing is close to the time of arrival; with effective quarantine, testing a few days later optimizes sensitivity to detect those infected immediately before or while traveling. These measures can complement recommendations such as social distancing, using masks, and hand hygiene, to further reduce risk during and after travel.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Quarantine/methods , Travel-Related Illness , COVID-19/diagnosis , Disease Transmission, Infectious/prevention & control , Humans , Models, Statistical , SARS-CoV-2/isolation & purification
14.
MMWR Morb Mortal Wkly Rep ; 70(3): 95-99, 2021 Jan 22.
Article in English | MEDLINE | ID: covidwho-1040194

ABSTRACT

On December 14, 2020, the United Kingdom reported a SARS-CoV-2 variant of concern (VOC), lineage B.1.1.7, also referred to as VOC 202012/01 or 20I/501Y.V1.* The B.1.1.7 variant is estimated to have emerged in September 2020 and has quickly become the dominant circulating SARS-CoV-2 variant in England (1). B.1.1.7 has been detected in over 30 countries, including the United States. As of January 13, 2021, approximately 76 cases of B.1.1.7 have been detected in 12 U.S. states.† Multiple lines of evidence indicate that B.1.1.7 is more efficiently transmitted than are other SARS-CoV-2 variants (1-3). The modeled trajectory of this variant in the U.S. exhibits rapid growth in early 2021, becoming the predominant variant in March. Increased SARS-CoV-2 transmission might threaten strained health care resources, require extended and more rigorous implementation of public health strategies (4), and increase the percentage of population immunity required for pandemic control. Taking measures to reduce transmission now can lessen the potential impact of B.1.1.7 and allow critical time to increase vaccination coverage. Collectively, enhanced genomic surveillance combined with continued compliance with effective public health measures, including vaccination, physical distancing, use of masks, hand hygiene, and isolation and quarantine, will be essential to limiting the spread of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). Strategic testing of persons without symptoms but at higher risk of infection, such as those exposed to SARS-CoV-2 or who have frequent unavoidable contact with the public, provides another opportunity to limit ongoing spread.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , COVID-19/transmission , Genome, Viral , Humans , Mutation , United States/epidemiology
15.
JAMA Netw Open ; 4(1): e2035057, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1012156

ABSTRACT

Importance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiology of coronavirus disease 2019 (COVID-19), is readily transmitted person to person. Optimal control of COVID-19 depends on directing resources and health messaging to mitigation efforts that are most likely to prevent transmission, but the relative importance of such measures has been disputed. Objective: To assess the proportion of SARS-CoV-2 transmissions in the community that likely occur from persons without symptoms. Design, Setting, and Participants: This decision analytical model assessed the relative amount of transmission from presymptomatic, never symptomatic, and symptomatic individuals across a range of scenarios in which the proportion of transmission from people who never develop symptoms (ie, remain asymptomatic) and the infectious period were varied according to published best estimates. For all estimates, data from a meta-analysis was used to set the incubation period at a median of 5 days. The infectious period duration was maintained at 10 days, and peak infectiousness was varied between 3 and 7 days (-2 and +2 days relative to the median incubation period). The overall proportion of SARS-CoV-2 was varied between 0% and 70% to assess a wide range of possible proportions. Main Outcomes and Measures: Level of transmission of SARS-CoV-2 from presymptomatic, never symptomatic, and symptomatic individuals. Results: The baseline assumptions for the model were that peak infectiousness occurred at the median of symptom onset and that 30% of individuals with infection never develop symptoms and are 75% as infectious as those who do develop symptoms. Combined, these baseline assumptions imply that persons with infection who never develop symptoms may account for approximately 24% of all transmission. In this base case, 59% of all transmission came from asymptomatic transmission, comprising 35% from presymptomatic individuals and 24% from individuals who never develop symptoms. Under a broad range of values for each of these assumptions, at least 50% of new SARS-CoV-2 infections was estimated to have originated from exposure to individuals with infection but without symptoms. Conclusions and Relevance: In this decision analytical model of multiple scenarios of proportions of asymptomatic individuals with COVID-19 and infectious periods, transmission from asymptomatic individuals was estimated to account for more than half of all transmissions. In addition to identification and isolation of persons with symptomatic COVID-19, effective control of spread will require reducing the risk of transmission from people with infection who do not have symptoms. These findings suggest that measures such as wearing masks, hand hygiene, social distancing, and strategic testing of people who are not ill will be foundational to slowing the spread of COVID-19 until safe and effective vaccines are available and widely used.


Subject(s)
COVID-19/transmission , Carrier State/transmission , Basic Reproduction Number , COVID-19/epidemiology , Carrier State/epidemiology , Decision Support Techniques , Humans , Infectious Disease Incubation Period , SARS-CoV-2
16.
Emerg Infect Dis ; 26(11): e1-e14, 2020 11.
Article in English | MEDLINE | ID: covidwho-760831

ABSTRACT

We report key epidemiologic parameter estimates for coronavirus disease identified in peer-reviewed publications, preprint articles, and online reports. Range estimates for incubation period were 1.8-6.9 days, serial interval 4.0-7.5 days, and doubling time 2.3-7.4 days. The effective reproductive number varied widely, with reductions attributable to interventions. Case burden and infection fatality ratios increased with patient age. Implementation of combined interventions could reduce cases and delay epidemic peak up to 1 month. These parameters for transmission, disease severity, and intervention effectiveness are critical for guiding policy decisions. Estimates will likely change as new information becomes available.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Disease Transmission, Infectious/statistics & numerical data , Models, Statistical , Models, Theoretical , Pneumonia, Viral/epidemiology , COVID-19 , Coronavirus Infections/transmission , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL